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ABSTRACT 
Paley, Wiener and Zygmund proved that, with probability 1, Brownian paths 
never satisfy a Lipschitz condition of order greater than 1/2. This result is 
improved by showing that they never satisfy even a Lipschitz condition of 
order 1/2 with a sufficiently small Lipschitz constant. 

1. Introduction. Let  x(t) = x~(t), - oo < t < oo, be the sample functions of  
a separable Brownian motion process, i.e. a stochastic process with x ( 0 ) - 0 ,  
having independent  increments x ( t ) -  x(s) normally distributed with mean 

0 and variance [ t -  s [, and with almost surely continuous sample functions. Al- 
ready Paley, Wiener and Zygmund [1] proved that with probability 1 the sample 
functions satisfy nowhere a one-sided Lipschitz condition of  order greater than 
1/2; more precisely they established 

-oo<t<~o h.-,o+ hlh+e = ~ -~ 1 

for  every ~ > 0. 

J.-P. Kahane drew our attention to this result and asked whether the e in (1) 
can be dropped. As written we cannot prove (1) with e = 0, but  i f  we write the 
above result in the equivalent form obtained by replacing = oo in (1) with > 0, 
then it  remains valid even for e = 0. We shall indeed prove something more, 
namely the following 

Tm~OREM. There exists a universal c > 0 such that 

-oo<t<oo h-*o+ hV2 < c = O. 

2. Proof. It is obviously enough to establish (2) with the inf taken over 
0 ~ t < 1 instead of  over all real t. This assertion is in turn implied by 

(3) P {I x(t + h) - x(t) I < ch~  for all 0 < h < A and at least one t in I0,1]} = 0 

f o r  all A > 0. Since it  is enough to prove this for a sequence of  values of  A tend- 
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ing to 0, the assertion would follow once we exhibit a c > 0 having the property 
that (3) holds for any given A > 0. 

Let n be a positive integer and denote by A~)(A) (i = 1,2 .. . . .  n) the event 

(4) I x( t  + h) - x(t) I < ch ~ for all 0 < h < A and at least one t in 

To prove the theorem we shall show that 

(5) limP.:® { L  J,=l A~")(A) } = 0. 

Since the probabili ty of  A~")(A) does not depend on i, (5) is implied by 

(6) lim nP{A~ ~) (A)} = 0. 
B=OO 

But if A~n)(A) occurs and t is a value in [0,1/n]  for which (4) holds and if we 
denote by y the corresponding x(t) then we have 

2 j 
p r o v i d e d -  - t < A. 

n 

Thus the occurrence of  A~)(A) entails 

Since the increments are independent the probability of  (7) equals the product 
of  the probabilities 

2c(2J/n) 1/2 

_ 2 ~ e-U2n/2J du = 2 
(2Jn/n) 1/2 J o (2n) 1/2 

Let us now choose c > 0 so that 

23/2c 

(8) rl = e - U 2 / 2 d u  < ~. 

Then 

23/2C 

fo  e -"2/2 du . 
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and thus, by (8), tends to zero for every A > 0. This establishes (7) and completes 
the proof of  the theorem. 

3. Remarks The choice of  a geometric progression in (7) was made to 
facilitate the computation. In view of  (8) this computation shows that 
c = 2- t (~ /2)  vl 2 -3/2 = ~z~/8 may be taken as the c in the theorem. Instead 
of  considering the sequence of  points 2 J/n in (7) we could have considered any 
sequence qJ/n with q > 1. This would replace the condition (8) by 

2c(t - (l/q)) -1/' 

(9) e -" /2 du < - .  
q 

Thus any c for which there exists q > 1 satisfying (9) will do. A little computation 
shows this requirement as equivalent to 

(10) C~(87~) -1/4 max t ( F e - ~ / S d u ) = 0 . 2 8  .... 
0<t<oo \ d r /  

Therefore, the assertion of the theorem holds for  any c satisfying (10). 
For all we know the theorem may hold even with c = oo. To disprove this it 

will be necessary to show the existence of values of t in whose vicinity the oscil- 
lations are small. But whereas the method of this note and others current in 
the literature are well adapted to show that oscillations cannot be too small 
they seem inadequate to trap "points of small oscillation". Thus, it is well known 
that almost surely l iminf  h.  0 + ] x(h) I (2h log log l / h ) -  1/2 = 1 and hence that  al- 
most surely limSUph~0+ Ix(t + h ) -  x(0l(Shlog log 1/h)-1/2 = 1 for almost all 
t (in the usual Lebesgue sense). It is extremely likely that the infimum of this 
l imsup taken over all real t is < 1 (indeed 0), i.e. that for almost all sample func- 
tions there exist values of t = t(co) for which this lim sup is smaller than 1. But 
we do not  know how to prove even this assertion which is so much weaker than 
the statement that our theorem fails with c = ~ .  
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